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SUMMARY 

Slot injection into a laminar boundary layer in both supersonic and subsonic flow is considered. The blowing 
rates are sufficiently large to provoke an interaction between the boundary layer and outer inviscid flow, and 
this interaction is accounted for by triple-deck theory. The non-uniform nature of the blowing velocity models 
the channel flow from which the injection takes place. 

1. Introduction 

In this paper we consider non-uniform blowing from a narrow slot in the boundary into a two- 

dimensional laminar boundary layer in either a subsonic or supersonic flow. The injected fluid 

emerges obliquely from a channel, and the non-uniformity is associated with the assumed ve- 

locity profile in the channel. The blowing is supposed sufficiently strong to induce an interaction 

between the boundary layer and oncoming stream and in order to describe this interaction 
triple-deck scales are assumed (see for example Stewartson [1]). Thus if Re is a representative 

Reynolds number then, in dimensionless form, we choose the slot width to be O(Re-3/8) and 
the tangential and normal components of  the blowing velocity to be O(Re-1/8), O(Re-3/8) 
respectively. 

In triple-deck theory the key feature, which distinguishes it from the clearly defined hier- 

archy of  classical boundary-layer theory, is that the pressure gradient which controls the flow 
within the lower deck is itself generated by changes in the displacement thickness of  the bound- 
ary layer with which it must be simultaneously calculated. 

Practical reasons for blowing into boundary layers include control of  the boundary layer and 
a means for effecting a reduction of  heat transfer across the boundary as, for example, on a 

turbine blade. Early work on blowing into boundary layers was restricted to weak blowing rates 

in which the normal velocity is O(Re- 1/2) (see for example Pretsch [2], Acrivos [3], Watson [4]). 

More recently strong blowing, within the same triple-deck framework as is adopted here, has 

been considered by Smith and Stewartson [5], and Napolitano and Messick [6] who consider 

uniform normal injection into a boundary layer in supersonic flow and subsonic flow respec- 
tively, and Riley [7] who considers uniform oblique injection into a boundary layer in a super- 
sonic flow. For the case of  uniform normal injection there is a finite discontinuity in the pres- 
sure grad.lent at each of the leading and trailing edges of  the slot. The introduction of  a uniform 
tangential velocity in the slot, as for oblique injection, results in an infinite pressure gradient at 
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the slot edges, where the shear stress also becomes unbounded. One of the aims of the present 
work is to introduce a more realistic blowing velocity distribution into the slot as would arise, 
for example, when the fluid emerges from a channel below the boundary. As we shall see, when 
the velocity at the boundary is continuous in oblique injection, the pressure gradient and shear 
stress are continuous, although the latter has an infinite gradient at the slot edges whose removal 
requires a study on a scale even smaller than that of the triple deck. 

In a supersonic flow the displacement-induced pressure is determined according to Ackeret's 

law, and as a consequence in the downstream integration the pressure may be determined at 
each step. There is one free parameter in the problem, for example the slot length, which is 
adjusted to enable conditions well downstream from the slot to be satisfied. In the examples 
which we give we choose a slot length which is the same as in one of the examples considered 
by Riley [7], with the same pressure rise at the leading edge of the slot following a free inter- 
action ahead of the slot. In a subsonic flow the pressure/displacement relation is more compli- 
cated and is represented by a Hilbert integral. Earlier subsonic triple-deck studies have involved 
overall iteration with substantial under-relaxation to avoid divergence, as for example in the 
study by Jobe and Burggraf [8] of the flow at the trailing edge of a flat plate, or have involved 
the solution of an unsteady problem as in Napolitano, Werle and Davis [9], and Napolitano and 
Messick [6]. A further aim of the present paper is to demonstrate the effectiveness of a method 

recently introduced by Veldman [10] for problems of this type in which no under-relaxation is 
required and which renders the calculation of subsonic triple-decks almost as easy as those in 

the corresponding supersonic case. In the examples we give we adopt the same geometrical 
configuration as for the supersonic case, and it is seen that qualitatively the overall flow fea- 
tures are the same for both sub- and supersonic flow. 

2. Problem formulation 

We suppose that fluid of viscosity ~- and thermal conductivity k flows with uniform speed O~ 
past a flat plate of length L which is maintained at a uniform temperature T w. At a distance ~s 
from the leading edge fluid is injected into the oncoming stream from a narrow slot. We define 

~ L  
Re = c-8 _ , (2.1) 

where ~-is the kinematic viscosity of the fluid, as the Reynolds number, and we assume Re >> 1. 
The length and velocity scales associated with the slot blowing are chosen to accommodate the 
triple-deck theory of Stewartson and Messiter (see for example Stewartson [1]). Thus the slot 
is assumed to be of width O(e3L) and the injected fluid emerges from it with speed O(e O~o) 
inclined at an angle O(e 2) to the oncoming stream. 

Through the triple-deck structure we are able to describe completely, for this example of 
strong blowing, the interaction between the boundary layer and free stream, and in particular 
show how the pressure field anticipates the slot upstream and readjusts downstream from it. In 
the theory of the triple deck there is a main deck, of classical boundary-layer thickness O(e4L), 
in which the flow behaves passively but because of the thickening of the lower deck provides a 
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displacement effect, which is responsible for the induced pressure variation. The displacement- 
pressure relationship is determined in an inviscid upper layer of thickness O(e3L). The flow in 
the lower deck, of thickness O(eSL), is ultimately responsible for the displacement effect, but 
we again emphasize that in the solution procedure the pressure and displacement are calculated 

simultaneously. This contrasts sharply with the hierarchical procedure of classical boundary- 

layer theory. Thus in the lower deck we write 

~3/8 (TwITs)312 ~5/8 (TwlT= ) 3/2 

X=Xs+Xs c~5/4 IM~_l13/8 e3X' Y=Xsa3/41M~_l l l /8  esY'  

o~ 114 C~18 (Tw/T= ) 112 

~=5~ ~ u(x, Y), 
IM~ - 1  I 1/8 

b-= G~c~ 3/4 IMZ~-111/8C 3/8 x 

x (Tw/T=) 1/2 63 V(X, Y), 

P-Poo 
- -  = C 1 / 4 0 ~ 1 / 2  IM 2 - 1  1 - 1 / 4 ~ 7 2  P(X), 

(2.2) 

where (~-, Y) are co-ordinates measured along and normal to the boundary; the Chapman vis- 

cosity law is assumed so that C = gw T~/g~ Tw, and a = 0.332 ... is determined from the on- 
coming boundary-layer flow. We then have, as the fundamental problem of the triple-deck theory 

~U ~U dP ~2U ~U ~V 
U - ~  + V 3~- - dX- + 3y-----5- , ~-'~ + -if-f-= 0, (2.3a,b) 

with boundary conditions on Y = 0, 

U = V = 0 ,  X < 0  and X > ~ ;  U=Uw(X ), V=Vw(X ), 0 < X < ~ ,  (2.4) 

together with the conditions 

U -  Y ~ 0  as X ~ - ~ ,  

and U -  Y ~ A ( X )  as Y - ~ ,  (2.5) 

which allow us to match our solution with the flow upstream, and with the main deck respec- 
tively. The displacement function A (X) is related to the pressure P(X) following a considera- 
tion of the flow in the upper deck. Thus we have, for supersonic flow 

P(X) = - A  '(X), (2.6a) 

where a prime denotes differentiation with respect to X, whilst for subsonic flow the corre- 
sponding relationship is 
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1 f_ ~ A'(~) d~. (2.6b) 
: 

The prescribed velocities U w, F w on 0 < X < I~ are themselves determined from an oncoming 

flow. Thus we assume that the injected fluid emerges from a channel, as in Figure 1, in which 

there is a parallel flow whose profile W(s) is given by 

Figure 1. The slot configuration. The slot length ~ = 5"563 and the channel inclination 0 = tan -j 3. With 
reference to equation (2.7) the channel velocity profiles correspond to the pairs of values (Ws, h)as follows 
- - - -  (0.9789,1), - . . . .  (0.7340, 3), • . . . .  (0.6917, 5), - . . . . . . . . .  (0.6325, ~). 

W = W s {tanh X s + tanh X(~ s - s) - tanh X£s}, ( 2 . 7 )  

where s is a co-ordinate measured across the channel, and l~ s is the channel width in our scaled 

co-ordinates. Varying the parameter X enables us to model  a channel flow which varies from a 

fully-developed form to one in which boundary layers surround a core of  uniform speed. Figure 1 

illustrates this by showing ch" anel profiles for various values of  k. This form for the assumed 

slot velocity is more realistic than the uniform values, with their at tendant  discontinuities, 

adopted by Riley [7]. 

In the next section we discuss our method of  solution of  the problem posed by equations 

(2.3) to (2.6) treating the cases of  supersonic and subsonic flow separately. 

3. Solution procedure 

Although the supersonic and subsonic cases must necessarily be treated separately, on account 

of  the different pressure-displacement relations (2.6a), (2.6b), our method for the numerical 

integration of  the boundary-layer equations (2.3) is the same in each case. This is based upon 

the original t reatment o f  Stewartson and Williams [11 ] and is implemented as follows. 
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It is convenient to eliminate the pressure from (2.3a) and work with the two-dimensional 
stream function qz which satisfies, from (2.3) 

O4~t Oa.I/ a3~/ a~l[t a3Qff 
- -  + - -  - -  - O ,  ( 3 . 1 )  
aY 4 8X 8Y 3 OY 8XSY 2 

together with,~om(2.5) ,  

- -  ~ Y  a s  X - - * - o %  
OY 

O2~It 
1 a s  y - ~  o o ,  Oy2 

(3.2a, b) 

and from (2.4) 

8xI, 
• = - - = 0 ,  X < 0 ,  Y=0;  

8Y 

fo x aq~ ~ l l = -  Vw(S)dX,  ay  -Uw(X) ,  0 < X < L  Y=0;  (3.3) 

8q, 
• = -  J Vw(X)dX, - 0 ,  X > ~ ,  Y=O. 

.Io 3Y 

An additional boundary condition is required for (3.1) and this is derived from an evaluation of 
(2.3a) at Y = 0 together with (2.5b) and either (2.6a) or (2.6b) depending upon the case under 
consideration. For the moment we write this condition simply as 

F(q 0 = 0. (3.4) 

By initiating the solution in an appropriate manner at a sufficiently large negative value of X 

we advance the solution step by step as follows. Equation (3.1) is first discretized in the stream- 
wise direction so that at each step we have to solve a nonlinear ordinary differential equation 
which is quasi-linearized and solved iteratively. This is achieved by first introducing a new in- 
dependent variable Z defined by 

2 Y - Y ~  
z = , (3.5) 

g =  

where Y= is a finite quantity chosen to be sufficiently large to model the outer edge of the lower 
deck. The solution is then represented as a finite series of Chebychev polynomials, thus 

N 
~ =  ~ aiTi(Z), (3.6) 

i=0 
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where ai(i = 0 ,  1 ..... N) are N + 1 unknown coefficients and 7]/is the Chebychev polynomial of 

degree i. The coefficients are determined by satisfying the equation to be solved, exactly, at the 

N - 3 'selected points' 

Z r = c o s { r T r / ( N - 4 ) } ,  r = 0 , 1 , . . . , N - 4 ,  (3.7) 

and satisfying the four boundary conditions given by (3.2b), (3.3) and (3.4) to give N + 1 equa- 

tions for the unknowns a i. The disadvantages of this method are associated with the time-penalty 

incurred in the inversion of a matrix with no particular structure that can be exploited. The ad- 
vantages of the method lie with the rapid convergence of the series (3.6), together with the fact 

that since I Ti(Z) I ~< 1 the last coefficient a N provides a ready estimate of the accuracy of the 
solution. Also, since the selected points (3.7) tend to be more densely distributed at each end of 

the range the method is well-suited to problems of a multi-structured type when a region of 

rapid change is close to one end of the range. 

We now consider the application of the above to each of the supersonic and subsonic flows 
in turn. 

(i) Supersonic f l o w  

The form of F(q 0 in (3.4) is determined as follows. From (2.5b) and (2.6a) we have 

a2 ~o 

a X a Y  
= - P ( X ) ,  ( 3 . 8 )  

Y= Y~ 

and from (2.3a) 

a3q~ a2q~ 
P'  (X)  = - ~ T  - V w ~ - U w U ' .  (3.9) 

Y=O Y=0 

Discretizing the left-hand side of  (3.9) so that 6 X P ;  = Pi - P i -  1 where 6 X = X i - X i _  l ,Pi  = 

P(Xi ) ,  and adding to (3.8) we have, as the additional boundary condition (3.4) at the current 

station X = X i 

$/ 03 XI'I [ 02* Y=O ) a2xlf Y= - Vw - UwUw + o-ffTff + s x e , _ ,  =o .  

Y=O Y~ 
(3.10) 

When the solution at X = X i has been determined using (3.1), (3.2), (3.3) and (3.10) the pressure 
Pi may be determined directly from either of (3.8) or (3.9). 

As discussed by Riley [7] the case of  oblique slot injection in supersonic flow provides ex- 
amples of both a compressive and expansive free interaction in X < 0 depending upon the chan- 
nel angle. In this paper we discuss examples of only the former type. The free interaction in 
X < 0 is initiated as in [7]. Thus at X = - 11:0 we set P = 10 -4 and when the numerical integra- 
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tion is carried out in the manner described above we have P(0) = 0A624 and the shear stress 

rw = b 2 ko/b y2 I y= o = 0.4794. In the calculations for the supersonic case we have set Yoo = 10, 

N = 34 and 6 X  = 0.1. The free interaction in X < 0 is calculated first so fixingP(0). This im- 

plies that the flow in X < 0 has already anticipated a disturbance of a certain magnitude and this 

in turn implies that, for a given channel inclination, not all of the parameters Ws, ~ and £s in 

(2.7) may be prescribed arbitrarily. In our calculations we have fLxed the channel inclination 

and width at the same values as were used by Riley [7] in the example of a compressive free 

interaction discussed there. We have then, for each value of X selected for (2.7), varied the value 

of the constant W s until the downstream condition P -+ 0 as X -+ ~o is satisfied. An incorrect 

choice for W s will lead to P -~ + oo as X -+ oo. By continuing our numerical integration up to a 

suitably large value of X (which we chose as X = 16) it is possible to adjust W s until it is within 

some prescribed tolerance of its exact value. This is similar to the procedure adopted by Smith 

and Stewartson [5]. At the edge of the slot the solution of (3.1) exhibits a double structure with 

an inner boundary layer of thickness O(X 1/3) as X-+ 0. This double structure is very similar in 

nature to that discussed in [5] and has not been specifically incorporated into our solution. The 

accuracy of our calculations can be estimated, in part at least, from the coefficients a i in (3.6) 

where none of the last few has exceeded 10 -9 in the course of the calculation. The results we 

have obtained for various values of X are discussed in the next section. 

(ii) Subsonic flow 

The treatment for subsonic flow is inevitably different from that for supersonic flow on account 

of  the differences between the pressure/displacement function relationships in (2.6a), (2.6b). 

Different approaches to subsonic triple-deck problems have been introduced in the litera- 

ture. Thus Jobe and Burggraf [8], in their study of the flow at the trailing-edge of a flat plate, 

use an overall iterative scheme in which for a given A (X) the pressure field P(X) is updated step- 

by-step as the lower deck equations are integrated. At the end of a complete sweep through the 

field of  integration a new estimate of the displacement function is made from the inverse of the 

Hllbert integral (2.6b). The process is repeated, with a substantial degree of under-relaxation be- 
tween the old and new values ofA (X), until the old and new values ofA (X) differ by an amount 

which is less than some prescribed tolerance, and overall convergence is achieved. By contrast 
Napolitano and Messick [6] in their study of uniform normal slot injection into a laminar bound. 
ary layer adopt the numerical technique of Napolitano, Werle and Davis [9] in which the prob. 

lem is treated as an unsteady one. Thus a relaxation-like time derivative of A is added to the 
right-hand side of (2.3a) the solution of which is advanced in time using a two-sweep alternating 
direction implicit method until a convergence criterion is achieved. 

In this paper we treat the lower-deck subsonic problem using the recently-introduced 
method of Veldman [10]. We believe that this method, which has still to be widely exploited, 

is the best available for problems of this type. As we shall see below it is relatively easy to im- 

plement and has proved to be completely stable in practice to the extent that over-relaxation is 
possible to accelerate the overall convergence. 

Following Veldman we may first write, since A (X) ~ 0 as X -+ oo, the Hilbert integral (2.6b) 

as  
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f 
~ 

nP(X)= A"(~)  log 1~ - X  Ida.  (3.11) 

If  X i is the current station (with i running from 1 to n) consider the contribution to the integral 

over an interval of  length 6 X centred upon ~ = ~j. This may be approximated numerically as 

(Aj+ 1 - 2Aj  + Aj_ l ) I i ,  j /26  X, 

where 

Ii, / = log ( I ~i+~ - Xi II ~j_ ¼ - X i I), 

(3.12) 

(3.13) 

1 and Aj = A(~j), ~i+-~ = ~J + i 8 X etc. Thus in this numerical approximation we may write 

7rPi =As + Fi, j + AiGi, i' (3.14) 

whet: 

Gi, j = (Ii, j + l - 2 I i ,  j +Ii, j _ l ) / 2 8 X ,  

i--1 n--1 
= AIGi, + ~ AjGi, I, Fi'j j~2 J j=i+l 

(s_: Sx-) As = -~' + n+k A " ( ~ ) l o g l ~ - X  l i d s +  

+ { (Ao-2Al ) I i ,  1 +All i ,  2 +Anli,  n-1 +(An+l -2An) I i ,  n} /28X"  

(3 .15a,b ,c)  

It is assumed that A (X) for X <~ X~, X ~ X n may be estimated from its asymptotic form so that 

A s in (3.15c) may be evaluated. 
Consider next the boundary condition (3.4)  which we construct in this case at X = X i as fol- 

lows. As before we have a relationship at Y = 0 between P and q~ derived from (2.3), (2.4) as in 

(3.9). Equation (2.5b) gives us 

OY 
Y= Y~ 

= Y= +Ai, (3.15d) 

and we finally eliminate Ai,  Pi f rom equations (3.9), (3.14) and (3.15d) to give the boundary 

condition (3.4) in the form 

[ 03og 
8 x 

Y=0 

~2~tlJ y= 0 ) G i i (  O~d 
- V w  - f f -  U - + ' - ~r oF 

As + Fi, j 
+Pi 1 - 0 .  

- -  7 f  

) 
Y= Y~ 

(3.16) 

We are now in a position to determine ~ ( X  i, Y) by our numerical procedure from (3.1), (3.2), 
(3.3) and (3.16). With the solution so determined we can now calculate A i and Pi from (3.15d) 
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and (3.14) respectively. In fact it proves convenient to work not with Fi, j in (3.16) but,  in order 

to accelerate convergence, with 

i-1 n--I 
ffi'j=j~2 AjGi'j + j = ~ + l  ZjGi'j' (3.17) 

where Aj  is the updated value calculated in the manner described above. Thus at the end of  

each iterative sweep we have a new set of  values for Ai, Pi" 
In order to implement the scheme outlined we need further information about the asymp- 

tot ic  properties of  A (X), P(X)  so that we may both initiate the calculation, and evaluate the 

quanti ty A s in (3.16). As X ~ + oo we have A,  P -~ 0 as the flow in the lower-deck region as- 

sumes a state of  uniform shear. We consider how the flow returns to this state as X-~  + co and 

infer corresponding results as X -~ - oo from the fact that A'  + iP is an analytic function of  

X + i Y. We write, as X -~ ~ ,  

and 

1 1 7 2 X2 /3  ~ X(2-n)/3Fn(7~), 17 FiX 1[3, ( 3 . 1 8 )  ~ 7  + = 
n=2 

oc 
P ~  Y" Pn x - n ~ 3 "  (3.19) 

n = l  

The constants P1 , P2 = 0 for otherwise the upstream conditions are violated. The function 

F2 (7/) then satisfies 

tll 1 72 Pt 
F2 + -~ F~ = 0, (3.20) 

F: (0) = • (2, 0), Fg (0) = 0, 

where 

xI,(12,0) = -  f o  ~ V w ( X ) d X .  

F 2 ' ~ 0  as r / ~ o o ,  

The solution of  (3.20) is 

fO '/ l t 3 f /  1 t 3 F2 (rl) = qz (2, O) + Crl e -  ~ dt  - C te - ~ dt, (3.21) 

where the constant C is as yet  undetermined. Smith and Stewartson [5] use a mass balance argu- 

ment  to determine C but  a more direct method has been suggested by Watson*. Thus, from (2.3), 

(2.5b) we may show that as Y-+ oo 

1 y 2  1 2 ~ - i  + Y A ( X ) + - i A  (X) + P(X),  (3.22) 

and since A,  P ~ 0 as X ~ oo we have, comparing (3.18), (3.21) with (3.22) 

* E.J. Watson, private communication 
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,I, 0) 
C = 

31/3 F (2/3) 

and then 

A(aq  
q~(£,0) F(1/3)  

32/3 r ( 2 / 3 )  
X-U3 

"~2 X - l /a,  say, (3.23) 

where f12 = 0.951 qs (£, 0). The result (3.23) implies that the displacement function has the 

asymptotic form A ~ ~-2 ( - X ) -  1/3 as X ~ - oo. However the perturbation of  the oncoming uni- 

form shear which reflects such behaviour yields a perturbation solution which is unbounded, 

and as a consequence P4 in (3.19) is chosen so that/32 - 0, thus 

P4 = 0.183 ~I, (~, 0). (3.24) 

The constant P3 is, as yet, undetermined. However if we are to satisfy the conditions A ~ 0 
as X ~ _+ oo then it follows that/°3 = 0. 

As X ~ - oo we now have, from (3.23), (3.24), P(X) ~ - 0.366 q~ (£, 0) ( - X )  -4 /3  ; this sug- 

gests that as X ~ - oo we write 

1 y2 ql .,. ~ __ O, 488 xI/(~, O ) ( _ X ) - 4 / 3  ~b(r/) ' r l=y / (_x) l /3 ,  (3.25) 

where ~(~) satisfies 

~ t l t  1 4 4 - 3  r/2 q~" -3  r~ q~'+~ ~=  1, 

= = = 0 .  

(3.26) 

The solution of  (3.26) gives, with (2.5b) and (3.25) 

A(X) ~ 0.476 qz(~, 0) (-S) -5/3 ( 3 . 2 7 )  

a s X ~  - oo. 

We may now commence our numerical calculation at a sufficiently large negative value o f  

X using (3.25). In the step-by-step integration the results (3.23) and (3.27) are now used to 

estimate the quantity A s in the condition (3.16). In all our calculations we have worked in the 

range - 7 ~< X ~< 23, and if to start our solution procedure for a particular pair (X, Ws) in (2.7) 
we assume initially that A(X) ~ 0, about 15 iterative sweeps are required to ensure that 

L A (n + 1 ) _ A (n) I < I 0-4,  where the superscript denotes the iteration, when no over-relaxation 

is employed. However Veldman [ 10] suggests that over-relaxation is possible with his method, and 

indeed we have found that if overall over-relaxation on A (X), with an over-relaxation parameter 

1"2, is employed then the number of  iterations to achieve the same accuracy is reduced to 9 or 
10. With the above tolerance on A we have, correspondingly, I P(n+l)  - p ( n ) [  < 10-a and 
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[ 7-(n+ 1) _ ~-(n) I < 10 -3 . For this case of  subsonic flow we have carried out various numerical 

experiments, from which we note, first of  all, that it has been necessary to take Y= = 20. For 

the first set of  calculations we have chosen N = 34, 6 X = 0.2; none of  the last nine coefficients 

a i in (3.6) exceeds 10 -7 . For X = 5 we have repeated the calculation w i t h N  = 24, 6 X = 0.2, and 

we have found that the converged values for P and r w change nowhere by an amount exceeding 
1 

%. This suggests that the representation (3.6) (for which the last coefficient never exceeded 

10-6) with N = 24 is adequate to resolve the boundary-layer structure. Our final set of  calcula- 

tions, and it is the results from these that are presented here, were carried out with N = 24, 

X = 0.1. The largest difference which we have noted between these and the first set is, for the 

pressure, 13 units in the third decimal place a tX  = 0.4 for X = 5, which represents a difference 

of  about 4% there, and for r w, 15 units in the third decimal place at X = 4.0 for 3, = 5 which 

represents a difference of  3% there. Elsewhere the difference between the two sets of  solutions 

is much less. We therefore suggest that the solutions presented here are accurate t o  O ( 1 0  -3 ). 

4. Results  

We have confined the calculations in this paper to the configuration shown in Fig. 1 for the fol- 

lowing reason. Riley [7] in his study of  oblique slot blowing with constant U w, V w considered 

supersonic flow only with a particular value of  the pressure at the edge of  the slot X = 0 follow- 

ing a free interaction in X < 0; the values of  Uw, Vw were fixed and the length of  the slot, ~, 

which is required if the downstream boundary condition is to be satisfied was determined. In 

our calculations we have fixed ~ = 5.563 with the angle of  inclination of  the channel 0 = tan -13, 

in our scaled co-ordinates, corresponding to one of  Riley's examples in which U w = 0.2, V w = 

0.6. This configuration is shown in Fig. 1 together with channel velocity profiles corresponding 

to different values of  X in (2.7), the case X = ~ yields constant U w = 0.2 and V w = 0.6. Al- 

though the results which we have obtained are qualitatively similar in both the supersonic and 
subsonic cases we discuss each separately. 

(i) Supersonic f l o w  

As we have already mentioned the free interaction which we have induced in X < 0 gives a pres- 

sure rise such that P(0) = 0.4624 as in Riley [7]. For the case of  uniform, oblique injection 

Riley showed that at the edges of  the slot the pressure gradient is infinite and the shear stress 

is also discontinuous and unbounded. For the case of  uniform normal injection studied by Smith 

and Stewartson [5] there is a finite discontinuity in the pressure gradient at the slot edges 

where the shear stress is continuous. In the present case the effect of  the non-uniform injec- 

tion rate, for which the velocity at Y = 0 is continuous as in (2.7), is to make the pressure gra- 

dient continuous at the slot edges where the shear stress remains finite. We have carried out the 

calculations in the manner described in Section 3, with a terminal point X = 16.0, for three 

values of  the parameter X in (2.7) namely X = 1 , 3 , 5  which, as can be seen from Figure 1, enables 

us to model a channel flow that varies from the fully-developed type to that in which there is a 

clearly defined core flanked by boundary layers. The results obtained are not unexpected. 
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Consider first the pressure distribution for X --- 1 shown in Fig. 2. As may be seen from equa- 

tion (2.6a), the pressure is influenced by local conditions and not conditions downstream. Thus 

when the velocities in the slot are small, as they are initially, the solution is dominated by the 

free interaction; after a relatively short distance, as the oncoming stream feels the full effect of  

the injection, the pressure falls across the slot and then beyond it gradually assumes its free- 

stream value. As X increases the effect of  the free interaction close to the leading edge of  the 

slot diminishes, and the pressure distribution approaches that  for the case X = ~o which we have 

taken from [7]. 

The displacement function A (X) corresponding to these pressure distributions is shown in 

Fig. 3. We see that A decreases in the free-interaction region, continues to fall across the slot 

P 

0 - 6  

0.4 

/ f  
, , 

- 4  - ~ '  

I , L I 
8 X 10 

Figure 2. 

- 0 . 2  

The pressure distribution P(X) in the supersonic case. 
h= 1, - - - -  ~.=3, 
X=5, - . . . . . . . .  h = ~ .  

I 
1 2  

A 

L I I . . . . .  1 _ J L I _ _  k & - -  _ _  I 
"4 ~ 2 4 l 6 8 10 X 12 

Figure 3. The displacement function A(X) in the supersonic case. The different cases correspond to those 
in Figure 2. 
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The wall shear stress rw(X) in the supersonic case. The different cases correspond to those in 

and finally beyond the slot gradually assumes its undisturbed value as in equations (3.23). 

Again as X increases the solution for A approaches that for )t = ~ which corresponds to uniform 

oblique injection. 
In Fig. 4 we show the shear stress at Y = 0 for these cases. As X increases the initial fall ir 

shear stress at the leading edge of  the slot increases, and in the formal limit )t = ~ the sheai 

stress is unbounded as in [7]. As in the case X = ~ the shear stress recovers, having passed 

through a clearly defined minimum, to reach a maximum at the slot trailing edge beyond which 

the undisturbed value is gradually approached. We see that as ~, increases the distribution ap- 

proaches that for uniform injection corresponding to X = ~ .  

(ii) Subsonic flow 

In Figs 5 to 7 we show the corresponding results for subsonic flow except that in this case 

there is no solution available for uniform oblique injection (X = ~) .  Calculations for the case of  

uniform normal injection have been carried out by Napolitano and Messick [6] for a slot of  a 

length which is comparable to ours, and for an injection velocity varying between 0.1 and 1.5. 

Their technique, as indicated earlier, is based upon the solution of  a time-dependent problem. 

In their calculations they set A = P --- 0 at the upstream location where the solution commences, 

and dA/dX = 0 at the terminal point. If  (XI, XF) represent the initial and final stations respec- 

tively they adopt intervals ( -20 .8 ,  25.8) to ( -35 .2 ,  45.8), depending upon the value of  Vw, 
with the corresponding value of  Y= varying between 12.0 and 21.0. A variable step-length 

6 X / >  0.25 was used in each calculation with a uniform normal step-length 6 Y = 0.3. In our 
calculations we have worked on the interval ( -7 .0 ,  23.0) with Y~. = 20.0, and for the results 

we present a fbxed step-length 6 X = 0.1. In addition we have incorporated the leading term in 
the asymptotic expansions for A, P as X ~ _+ ~ into our solution procedure. 
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The pressure distributions shown in Fig. 5 are not dissimilar to those of the supersonic case 

in that, overall, the pressure is seen to fall across the slot. However since in the subsonic case 

the pressure responds not simply to local conditions but rather to the global situation, the pres- 

sure distribution is more symmetrically disposed across the slot than in the supersonic case. 

The shear stress is shown in Fig. 6. For X < 0 the values of the shear stress are virtually in- 

distinguishable for the different values of ?~. For the supersonic case they are of course exactly 

the same resulting from the free interaction. For X > 0 the shear stress shows the same tendency 

to decrease sharply with increasing ?~, as in the supersonic case, and reaches its maximum value 

across the slot at its trailing edge. 

Finally we show, in Fig. 7, the displacement function A (X) for the subsonic case which is 

seen to vary in a similar manner to that which we have calculated in the supersonic case. 

0"4 
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L I 
4 -2 

-0.2 

-0"4 

2 ~ .  4 I 6 8 10 X 12 

/ y  

Figure 5. The pressure distribution P(X) in the subsonic case for the pairs of values (Ws, h). 
(0.9789, 1), - -  - -  (0.7340, 3), • . . . .  (0.6917, 5). For X < 0 the cases X = 3,5 are indistinguishable. 
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The wall shear stress rw(X) in the subsonic case. The different cases correspond to those in Figure 5. Figure 6. 
For X < 0 the three cases are indistinguishable. 

Journal of Engineering Math., Vol. 15 (1981) 299-314 



Slot injection into a laminar boundary layer 

1 

A 

[ I 
- 4 ~ .  c 

I 
~ I 1 I I I 

2 4 I 6 8 I 0  X 12 

" ~ ~  ~ 

313 

Figure 7. The displacement function in the subsonic case. The different cases correspond to those in Figure 5. 

5. Discussion 

In this paper we have considered the behaviour of a boundary-layer flow into which there is in- 

jection from a slot in the boundary. The slot width and injection rate are chosen so that the in- 

teraction between the boundary layer and outer inviscid flow which is provoked may be de- 
scribed by triple-deck theory. The work is therefore an extension of that to be found in [5], [6] 
and [7]. In contrast to classical boundary-layer theory in which, for example, the displacement 

effect of the boundary layer is determined following the determination of the pressure, there is 
no such hierarchy in triple-deck theory which requires the simultaneous calculation of pressure 

and displacement. 

In the examples which we have considered the injection velocity at the boundary is repre- 

sented by a non-uniform flow, which models the flow in a channel below the boundary from 

which the injected fluid emerges. This results in a more realistic injection velocity profde than 
that considered earlier. In particular the discontinuity in the pressure gradient at the edges of 

the slot is removed. 

The calculations which we have carried out include examples of both supersonic and subsonic 
flow. In the former case the pressure-displacement relation is given by Ackeret's law, as in (2.6a), 

which depends upon local conditions. By contrast, in subsonic flow the pressure-displacement 
relation is given by the Hilbert integral in (2.6b) which reflects the global elliptic nature of the 

interaction in this case. The differences in the results which emerge are typified by the pressure 

distributions shown in Figs 2 and 5. Consider the case which, with reference to Fig. 1, corre- 

sponds to an almost fully-developed injection velocity profile. In each of the supersonic and 

subsonic cases there is a broad similarity in the results in the sense that the pressure rises ahead 

of the slot, falls across most of it, and finaUy recovers to its undisturbed value. There are, how- 
ever, differences in detail. Consider the supersonic case shown in Fig. 2. There the pressure rise 
ahead of the slot is the result of a free interaction, and since in the slot the injection rate is ini- 
tially small the free-interaction effect dominates and the pressure continues to rise. Ultimately 
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the local velocity is strong enough to reverse this trend. By contrast, in the subsonic case shown 

in Fig. 5, the pressure at any point is sensitive to flow conditions everywhere. A consequence of  

this is that not only does the pressure disturbance penetrate further upstream compared with 

the supersonic case, but  it responds more readily to the slot conditions reaching a lower maxi- 

mum more quickly and falling to a much lower minimum. Also we note that  as X increases the 

pressure profdes in the subsonic case bear a closer resemblance to one another, and are more 

nearly symmetrical across the slot, than in the supersonic case. We interpret this as a clear indi- 

cation that in the subsonic case the pressure at each point is reacting to the overall disturbance 

provided by the slot injection which it cannot do in the supersonic case. 
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